Anyone Out There?

Exploring the questions and some of the Scientific Method in the Study of Life Existing Beyond Earth

Astronomy
 Course Outline

Some Early thoughts On Life Beyond Earth

Humans have been asking since the beginning of recorded history.

"In the universe, nothing is the only of its kind. In other regions, surely there must be other Earths, other men, other beasts of burden." Lucretius, 1st century BC

Christiaan
Huygens' Cosmotheoros (1698).

- During the last years of his life, Christiaan Huygens worked on a "philosophical treatise", addressed to his brother Constantijn, which contained his speculations on the construction of the universe and the habitability of the planets as deduced from his own observations and those of other astronomers of his time.
- Using the powers of observation available to him, he theorized that the inhabitants of Jupiter and Saturn (he used the term "Planetarians") must possess "the Art of Navigation," especially "in having so many Moons to direct their Course.... And what a troop of other things follow from this allowance? If they have Ships, they must have Sails and Anchors, Ropes, Pillies, and Rudders..."

CHRISTIANI
 H U G E N I I $K O \Sigma M O \Theta E \Omega P O \Sigma$,

SIVE
De Terris Cocleftibus, earumque ornatu,

> CONJECTURX.

A D
CONSTANTINUM HUGENIUM,
Fratrem:

What is

Earthly Life Itself?

- Is it a mechanical process?
- Is it supernatural?
- Or is it a complex system that "emerges" and how so? From laws of chemistry, genetics, evolution? What, if anything, "guides" life?

Digesting Duck

The Canard Digérateur, or Digesting Duck, was an automaton in the form of a duck, created by Jacques de Vaucanson and unveiled on 30 May 1739 in France. The mechanical duck appeared to have the ability to eat kernels of grain, and to metabolize and defecate them. Wikipedia

Some things to keep in mind

- We invariably fail to imagine what we fail to imagine
- The universe is not only stranger than we suppose but stranger than we can suppose
- The phenomenon in the universe are not a static collection of parts moving about on independent "tracks" so to speak but a dynamic, complex and often selfadaptive system.
- Life emerging may very well be an emergent feature given the right alignment of variables (heat, time, elements present, etc)

"Where is Everybody?" The Fermi Paradox and Possibility of Extraterrestrial Life

- 1950, Los Alamos National Laboratory New Mexico.

A group of scientists, Enrico Fermi and Edward Teller among them, are sitting at a table, discussing the some of the deepest mysteries of physics. They are on a lunch break at the facility where the foundations of modern nuclear physics were formed. Suddenly during the conversation, in an apparent juxtaposition, Fermi asks "Where is Everybody?". Surprisingly, the rest of the scientists know exactly what he means, to quote Edward Teller "The result of his question was general laughter because of the strange fact that in spite of Fermi's question coming from the clear blue, everybody around the table seemed to understand at once that he was talking about extraterrestrial Ife."

Frank Drake

In the 1960's ET stepped out of science fiction

Drake presented a thought experiment, not a scientific equation. It is designed to inspire thought, dialogue and quantify expectations based on things we can observe with certainty (l.e. not counting UFO sightings etc)

"The Drake Equation"

- 7 variables that allow us to get an estimate of probability of intelligent, communicating life in our galaxy (N)
- Important to note, this is just a guess!

$$
N=N^{*} \bullet f_{p} \bullet n_{e} \bullet f_{\ell} \bullet f_{i} \bullet f_{c} \bullet L / T_{g}
$$

N^{*} Number of Stars in the Milky Way Galaxy

- This is the factor we actually have a decent handle on
- For scientists, that means we are fairly certain that there are between 100-500 billion stars in the Milky Way

$$
N=N^{*} \bullet f_{p} \bullet n_{e} \bullet f_{\ell} \bullet f_{i} \bullet f_{c} \bullet L / T_{g}
$$

Extra Criterion

 for StarsEasy to find

Not too Bright
(as to hide
Potential
planets in glare)

Not all stars are suitable

f_{p} What Fraction of Stars Have at Least One Planet?

- Current estimates: about 10\% to 50\% of all stars have at least 1 planet
-. Scientists are refining this estimate all the time with missions like Kepler

$$
N=N^{*} \bullet f_{p} \bullet n_{e} \bullet f_{\ell} \bullet f_{i} \bullet f_{c} \bullet L / T_{g}
$$

Habitable exoPlanets

Smaller than

 Neptune
Hard to find

Don't generate light and are more affected by host stars glare

Planets - Transit

Planet moves between us and star

Predicted sizes of different kinds of planets

Faint dip in brightness -

 star still a point!
Learn a lot

 from a transit

Will also have

Planets - Radial Velocity

As planet orbits tar, star also ooves loppler shift can e observed 'ery small notion

Planets - Direct Imaging

n_{H} How Many of These Worlds Have the "Right" Environment?

What does "Right" mean?

- Small, rocky planet.
- That has a heat.source
- Habitable Zone
- Tidal heating
- And an atmosphere

What we're really looking for is...

$$
N=N^{*} \bullet f_{p} \bullet n_{e} \bullet f_{f} \bullet f_{i} \circ f_{c} \bullet L / T_{g}
$$

Liquid Water!

- All life that we've discovered on Earth requires liquid water to thrive
Good solvent for organic materials, transporting nutrients, etc.
- It floats, creating an insulating layer for the organisms beneath

Hydrogen
Helium

Comparing Planetary atmospheres as a metric of habitability

Our Solar System

- Possibly 6 watery worlds
- We are exploring these with:
- Orbiters - Cassini around Saturn
- Rovers - Mars evidence of past water
- Possible future drilling missions to outer moons? Human exploration of asteroids and Mars?

$$
N=N^{*} \bullet f_{p} \bullet n_{e} \bullet f_{\ell} \bullet f_{i} \bullet f_{c} \bullet L / T_{g}
$$

f_{ℓ} How Many Habitable Planets Develop Any Life Forms?
 (at any point)

Start with what we know: Our Solar System

Just 1 that we know of

- Earth!

$$
N=N^{*} \bullet f_{p} \bullet n_{e} \bullet f_{l} \bullet f_{i} \bullet f_{c} \bullet L / T_{g}
$$

Life - Spectroscopy

Watch spectrum for lines
oxygen - only exists because of plants

Observe during transit
Some light passes through atmosphere
$\mathrm{f}_{\mathrm{l}} \approx 13-100 \%$

Imaging Spectroscopy - Biosignatures on Earth-like Exoplanets

A hypothetical earth-like planet that shows water, ozone, nitrous oxide, and methane in its spectrum could be inhabited by plant life, bacterial life, and intelligent life. The presence of ozone indicates that oxygen must also exist in the atmosphere, since ozone is created from UV radiation reacting with oxygen.

A hypothetical planet showing methane and water in its atmosphere suggest that the planet is a good candidate for the evolution of life, assuming it does not already exist. Both plant life and bacterial life would be expected based on the biosignatures.

Possibility of Simple, i.e. singlecelled, Life, could create remotely sensed biomarkers

Projects to explore for microbes on Mars (either alive or extinct)

Urey and Miller Experiment

Comparing remotely sensed cosmic chemistry with Earth biochemistry experiments to replicate the origin of biomolecules, amino acids, nucleic acids, lipids for cell membranes, etc.

Using Space

 science to help develop theories and refine models for life on Earth especially concerning Living Networks andEcosystems

Life as seen from space represents complex living networks

f_{i} How Often Does Simple Life Become Intelligent?

- Billions of species have existed on Earth. Many Species have developed very complex brains.
- Only one seems to have looked out into the galaxy for company - perhaps a fluke of circumstance!
- This part could ask Does life always become more complex over time?
$N=N^{*} \bullet f_{p} \bullet n_{e} \bullet f_{\ell} \bullet f_{i} \bullet f_{c} \bullet L / T_{g}$

f_{c} How Many Intelligent Civilizations/Species Communicate?
 - These

civilizations/species are able and willing to communicate

- Is it possible that they are out there in listenonly mode?

$$
N=N \bullet f_{p} \bullet n_{e} \bullet f_{\ell} \bullet f_{i} \bullet f_{c} \bullet L / T_{g}
$$

L Average Lifetime of a Communicating Civilization

We have been communicating for less than a century

How long will we survive?

$$
N=N^{*} \cdot f_{p} \bullet n_{e} \circ f_{\ell} \circ f_{i} \bullet f_{c} \bullet L / T_{d}
$$

Looking at past civilizations

Civilizations have a habit of emerging but also collapsing

Same in nature with insect "societies"

Range of Estimates

Pessimistic
 Factors
 Optimistic

100 billion
One quarter
1 in 1000
1 in 1000
1 in 1000
1 in 100
1,000 years

We are alone

In the Meantime

And we look into the future...sending messages

And speculate, imagine

- Complex civiliaztions in space could create very obvious technosignures

Complex Life - Direct Observation of Technosignatures
 Tiny planet-bound life forms

 Individual cities are small (Dublin ~ 30km) Large networks can become visible at scale

Similar to swarms of animals

Speculative alien living structures

Swarms in space - a speculation

Dyson Swarms and Von Neumann Probes

If self-
replicating
machines are in our technological "Future" then if we do make contact with them they would have been made by a more advanced society. So why have we not seen them in more glaring detail?

Answer because its a very big galaxy on the scale of even our radio transmissions

Future Explorations

As our tools become more sensitive.u
As we explore more planets in our own solar system

Science Fiction may someday become Science Fact

