Evening Classes Week Two

The Planets and Solar System

Presented by John Campbell

- Last Class
- How the sky appears to us in terms
of patterns
- constellations as abstract 'signposts',
- Stars moving as the Earth spins
- Occasional meteor Showers.
- Essentially The Sky as A kind of stage.
- But who are the actors?

The planets

And Comets!

Comet ZTF (C/2022 E3) at 11 p.m. Central Time Facing north

Retrograde Motion

As Earth passes Mars, Mars appears to move from east to west.

Mid September

October 31st

Predicting the Future...Mars will appear to go backwards! We call this Retrograde Motion

October 31st

January
 12th(retrograde ends)

- In between the time when planetary retrograde begins and the time when planetary retrograde ends the planet in question appears at its brightest

The question of course is Why?

The planet is closest to the earth at the halfway point in the retrograde because the earth has, in its own orbit, "caught up" with the other planet in its own orbit.

In other words at this point (called opposition) the Earth and the Planet in question are at their closest distance.

For Mars this was on
December 7th 2022

Jupiter at Opposition = Very Bright!

have a look to

Jupiter at 2023
opposition

Jupiter at solar conjunction

This is Jupiter reaching opposition following a period of prograde motion towards Aries and the Pleiades (Taurus) it is now in retrograde

After opposition, Jupiter will continue Retrograde motion as the earth
"overtakes" Jupiter in its orbital "laneway"
It will enter prograde again in December 31st 2023 And will continue to move toward Taurus again

Conditions for Observing Planets

-Where the Planet is relative to Constellations/Moon
-Is the planet at Opposition
-Light pollution

- Small apertures okay
-High magnification (100x - 250x)
-Steady 'seeing'

Planetary Alignments

Planets are a varied lot

The Inner Solar System

The Nebular Hypothesis

"The Sun \& planets
formed together from the gravitational collapse of a nebula"

Why planetary compositions differ

The interiors of the terrestrial planets

The interiors of the terrestrial planets

Eerth

- Iron cores
- Rock crusts
- Very little volatiles

Mercury

Earth, Mercury \& Moon size comparison

Mercury's faulted landscape

Mercury's faulted landscape

The Sun is $\mathbf{7}$ times as large in the sky

<- Sunspot

Mercury ->

- Mercury, like Venus, is closer to the Sun than Earth. So on

Earth we can occasionally see Transits of Mercury across the Sun

- Mercury is so close to the Sun that it has a tail!
- Made of sodium ions
- Possible to image using specialised cameras and filters (589 nm)
- Forms a component of the solar wind (cosmic rays)

Earth \& Venus - size comparison Most similar planets in size.

The phases of Venus

(1)Inferior conjunction Venus at brightest (which is ironically at its Sharpest crescent) always Follows its greatest elongation
(2)Greatest western Elongation -

Venus will be at greatest elongation - farthest from the sunset - on June 4, 2023

First planet explored The Venera Landers

Venus has a hellish environment

The Earth's Moon (The Moon or Luna)

(1) Surface like Mercury's airless \& cratered.
(1) Very small core Moon contains very little metals - low gravity: 17\% Earth's.
(1) Geologically inactive few minerals \& no volcanism in 3 billion years.

Some interesting very interesting craters And regions of high brightness (albedo)

- Maria- so called "Seas" are really
- plains of erupted
- basalt with much
- fewer craters (are
- younger) < 3 byo
- \& found only on
- Nearside.
- Moon is Tidally Locked with Earth
- Some other regions of high reflectivity
- due to lunar rock (regolith)
- Bleached by billions of years of
- Cosmic rays
$5=$

58
F
\qquad

Personal favorite

 region on Luna place called Reiner Gamma which hasa rare isolated magnetic field on
the Moon that affects the rate of Cosmic Ray "bleaching"

The Moon's Phases

(1) - A Mars-sized object strikes Earth 4.4 bya

(2) The collision liquefies both bodies

A body about the size of Mars comes close to the Earth, after the Earth has formed its core.

Some falls back to the Earth's surface.

It hits the Earth, vaporising parts of both its own and the Earth's mantle.

Material is thrown back into space.

(3) The vapourised impactor orbits Earth.

A body about the size of Mars comes close to the Earth, after the Earth has formed its core.

Some falls back to the Earth's surface.

It hits the Earth, vaporising parts of both its own and the Earth's mantle.

Material is thrown back into space.

The Moon forms from the disk.

(4) The impactor's core falls back to Earth.

A body about the size of Mars comes close to the Earth, after the Earth has formed its core.

Some falls back to the Earth's surface.

It hits the Earth, vaporising parts of both its own and the Earth's mantle.

Material is thrown back into space.

The Moon forms from the disk.

(5) Lighter, mantle material says in orbit.

A body about the size of Mars comes close to the Earth, after the Earth has formed its core.

Some falls back to the Earth's surface.

It hits the Earth, vaporising parts of both its own and the Earth's mantle.

A disk of material is left orbiting the Earth.

Material is thrown back into space.

(6) The Moon forms from this lighter material.

A body about the size of Mars comes close to the Earth, after the Earth has formed its core.

Some falls back to the Earth's surface.

It hits the Earth, vaporising parts of both its own and the Earth's mantle.

Material is thrown back into space.

The Moon forms from the disk.

Mars

Earth \& Mars size comparison

MARS

Land Area $144 \mathrm{~m} \mathrm{sq} . \mathrm{km}$
Distance from Sun $\quad 207-249 \mathrm{~m} \mathrm{~km}$
Orbital Period
Axial Tilt
Length of Day
Gravity
Atmos. Contents
Atmos. Pressure
7-10 millibars

EARTH

148 m sq. km
147 - 152 mkm
365 days
23.5°
24:00:00
1.00 G
$\mathrm{N}_{2} \& \mathrm{O}_{2}$
1013 millibars

Global Dust Storms

Mars • Global Dust Storm

Powerful One in Summer2018 increased Brightness but killed the Opportunity Rover

Water on Mars.

Up until recently: Ice/Vapour

Recent discovery Briny liquid?

Were definitely Rivers, seas in the past

Break Here and talk about asteroids

ggen-helium

The Asteroids

ccreting rocky planetesimals

Sun

GASCIANTS

Jupiter

Uranus

Comparative compositions of planets

Atmosphere \& stratiagraphy of a typical giant planet

Voyager 1 \& 2 - "The Grand Tour"

Jupiter

Jupiter's Atmosphere

The Great Red Spot

Possible model for giant planet interiors.

Jupiter at low magnification

Saturn

Saturn's Rings

Paruinis caryestivionirnimani

Uranus

Neptune

Orbits of the Galileans

Observation of the Galileans

Europa

Interiors of the Galileans

Europa

Callisto

Moons - Hierarchv

Moons of the Solar System Scaled to Earth's Moon

Triton - Captured Moon(most likely a dwarf planet from Kuiper Belt that came to close to

 Neptune)
Triton's varied terrain

Cryo-Volcanism

Strange Planet Pluto?

Or Not so Strange Member of the "Dwarf Planets" or "Kuiper Belt Objects"

Uranus

Neptune

50 AU

The Kuiper Belt

Comets

Comets up close

Comet Hale-Bopp and Comet NEOWISE

SPACE

COMET HALE-BOPP FLIES BY EARTH

The Oort Cloud

Useful websites

www.astronomy.ie/handouts www.stellarium.org
Thank You

