Astronomy Course Outline

Week 2: The Planets Week 3: The Stars

Week 1: The Sky

Week 4: History of Astronomy

Week Telesco Week 6: Deep Sky Objects Week 7: Cosmolog Week 8: Alien Worlds

Corona-Borealis Capricornus 100 million ly Supercluster Supercluster Hercules Bootes Superclusters Capricornus Superclusters V oid Pavo-Indus Bootes Supercluster Centaurus Supercluster 65.64 Shapley Supercluster Sculptor Sculptor Superclusters Virgo Coma, Supercluster Ursa Major Supercluster Hydra Pisces-Cetus Perseus-Pisces Supercluster Leo Superclusters Superclusters Sextans 👘 Horologium 🦷 Supercluster

Columba

Supercluster

Cosmology

Week Seven

COSMOLOGY MARCHES ON

Isaac Newton(1642-1727)

Newton's Universe -

Space & Time are a stage on which matter acts out the laws of motion. 19th Century Problems with Newton's Universe

Olber's Paradox

•2nd Law of Thermodynamics

Michaelson-Morely
Experiment

19th Century Problems with Newton's Universe

Olber's Paradox

•2nd Law of Thermodynamics

Michaelson-Morely
Experiment

2nd Law of Thermodynamics

19th Century Problems with Newton's Universe

Olber's Paradox

•2nd Law of Thermodynamics

Michaelson-Morely
Experiment

Michaelson-Morely Experiment

Einstein's Universe -

Matter tells spacetime where to warp; spacetime tells matter where to move.

Properties of our Universe

Cosmological Principle - The Universe is smooth on the large scale (100s of light-years).

Homogeneity - The Universe looks the same at every *location*.

Isotropy - The Universe looks the same in every *direction*.

Omni-recessionality - On the large scale, everything is rushing away from everything else.

Local Group

3 million light years across, contains about 30 galaxies, the Milky Way, the Andromeda galaxy, the large & small Magellanic Clouds, M32 & M33, & several other dwarf galaxies. These are not Receding from each other, but will merge in about 10 billion years

The Local Group

© Mark A. Garlick space-art.co.uk

Virgo Cluster

A cluster of some 1,000 galaxies containing the Local Group. It is 50 million light years across.

Local Supercluster -

Superclusters are the largest gravitationally bound objects in the Universe. They range between 100 million & 1 billion light years across.

They are long, often flat, filament-shaped objects.

Voids

Bubble-like regions devoid galaxies or visible matter. The local super cluster is separated from the Coma Cluster by a void 300 million light years in diameter.

Our Universe is a cosmic sponge

Hubble's Law - A galaxy's speed of reccesion from us is directly proportional to its distance.

Edwin Hubble

This linear relation is observed from all places - the Universe has no centre.

The Big Bang - Universe is Born

The Big Bang - Universe Expands & Cools

1/2 million years - Matter & Radiation Separate

1 billion years - Galaxies Form

As the Universe expands, galaxies appear to rush away from each other

15 Billion Years - Present Day

Astronomy 1101

Big Bang Theory

The First Day

Predictions of Big Bang Theory

- The Universe is homogeneous and isotropic (very smooth)
- But not too smooth...
- The ratio of H/He (about 75% H, 25% He)
- Trace abundances of D, ³He, Li, Be
- The cosmic microwave background radiation

Georges LeMaitre

George Gamow

SINTHE.

Ralph Alphe

r

The Universe is Homogeneous and Isotropic

Homogeneous: looks the same at all locations Not isotropic

Isotropic: looks the same in all directions Not homogeneous

Looking afar is looking far back in time

ORIGIN (BIG BANG) MILKY WA GALAXY

Big Bang Theory

The First Day

How did the Universe get *clumpy* on the small scale?

This is the big-question in cosmology today

An 'Open Universe'...

...the expansion goes on forever.

Closed Universe

Flat Universe

Open Universe

Big Bang Theory

The First Day

Big Bang Theory

The First Day

Traditional view of the fate(s) of the Universe

rotational velocity

distance from centre

distance from centre

In 1998 it was discovered that the rate of expansion is accelerating.

The Big Rip

ongoing eternal accelerating expansion (cosmological constant)

tim

dark energy reverses.

Big Rip (phantom energy)

accelerating expansion decelerating expansion

13.7 billion years

today

Big Bang

